
HO-Ai32 983 R COMPUTER SCIENCE VERSION OF GOEDEL S THEOREII(U) NAVAL 1/1
POSTGRADUATE SCHOOL MONTEREY CA B J MACLENNAN RUG 83
NP552-83-Oi8

UNCLASSIFIED F/C 9/2 N

mhmmomhomhEsiE

-7 47

:iin

L

Ia

,L.

11111 125

.(

MICROCOPY RESOLUTION TEST CHART
NATIONAL BRERAU OF STANDARDS- t963-A

NPS52-83-010

f~f) NAVAL POSTGRADUATE SCHOOL
Monterey, California

~SEP 2 7983

A COMPUTER SCIENCE VERSION OF GODEL'S THEOREM

Bruce J. MacLennan

August 1983

C-

LU Approved for public release; distribution unlimited

LA.* Prepared for:

Chief of Naval Research
Arlington, VA 22217

01p

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

I BRUCE J. MacLENNAWw-
Associate Professor of
Computer Science

Reviewed by: Released by:

DAVID K. HSIAO, Chairman WILLfAM M. TOLLES
Department of Computer Science Dean of Research

", - • - - . -' _ -_ ' - , - . .- ," . ./ . ' . ,i . ', . -. , - ,

UNCLASSIFIED
SECURITY CLASSIFICAT'ION OF THIS PAGE often. Does fEnted)_________________

REPORT DOCUMENTATION PAGE BFR OPEIGFR
IREPORT NUMBER L. GOVT ACCESSION NO. L RECIPIENT'S CATALO4 NUMBER

NPS52-83-010
4. TITLE (and &abliffe) L TYPE OF REPORT II PERIOD COVERED

A Computer Science Version of Gadel 's Theorem Technical Report
6. PERFORMINO ORO. REPORT NUMIER

1. AUTHOR(e) S. CONTRACT amORNT MUMUEawdj

Bruce J. MacLennan

S. PERFORMING ORGANIZATION N4AME AND ADDRESS 10- PROGRAM ELEMENT. PROJECT. TASK
AREA II WORK UNIT NUMBERS

Naval Postgraduate School 611-52N: PMOO-01-10
Monterey, CA 93940 NOOO 1482WR20043

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Chief of Naval ResearchAust18
Arlington, VA 22217 1

14. MONITORING AGENCY NAME A AOORESS(iI difermat imm CORWu111ing Office) IS. SECURITY CLASS. (of I%#@ rupen)

Unclassified

I"a OECL.ASSIFICATIONi DOWNGRADING
SCH EDULE

IS. DISTRIBSUTION STATEMENT (of this Ropett)

Approved for public release; distribution unlimited.

17. DISTRIGUTI0ON STATEMENT (at the sh.usee mitered I Block it 011 kiooS tm a""u")

19. SUPPLEMENTARY NOTES

19. KEY WOROS (Coninue an reernwe oide it necessary mnd IdentiFy 6? Weeck tmale)

G~del's Theorem, halting problem, incompleteness theorem, computability,
formalism, decidability, paradoxes, decision problems, foundations of mathe-
matics, logic

~ ASS~7 ACT -11111100 SIR reverse side of necesay A" d,~yb igAaml.

present5,a simplified proof of Gadel's theorem by appealing to well-
known progranmming concepts. The significance of Gbdel's result to computer
science, mathematics and logic is discussed.

DD I~ 173 EITIN O 1 NV 6 IS SSOETEUNCLASSIFIED
S1/N 0102- LF- Old.- 6601 SECURITY CLASSIFICATION OF THIS PAGE (3Pmn Date Rater**d

A Computer Science Version of G6del's Theorem

B. . MacLennan

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940.. ",

Abstract:

We present a simplified proof of G6del's theorem by appealing to well-known program-

ming concepts. The significance of G6del's result to computer science, mathematics

and logic is discussed.

L Introducton

Most computer scientists have heard of G6del's Incompleteness Theorem, and many

have seen it "proved." Yet, G6del's theorem usually remains a mystery. The proof, as

it's generally presented, is almost incomprehensible. Students usually come away with

a feeling that they've somehow been tricked. They would probably ignore the theorem

altogether. but they've been told that it's very important, that it sets limits on logic

and rational thought. It is therefore particularly unfortunate that both the theorem

and the proof are presented so mysteriously.

Part of the difficulty of the theorem is that it was written in the early 1930's, before

the widespread use of general purpose computers. G6del's Theorem is a theorem abcit

computers -which was formulated before there were many computers. By ;sing tdeas

familiar to any programmer, Godel's Theorem can be made easily understandax.

There is no excuse for doing without these concepts.

Section 2 presents an informal proof of Gbdel's theorem based on ideas from zro-

gramming. Section 3 generalizes the theorem to other questions of decidability, 3nd

Section 4 relates the results to symbolic logic. Finally, Section 5 discusses some wder

implications of the theorem.

. -1-°° . .. -•..
-L ; ; - ' ' - ' ; - " . . ' , "

-- a-

. The HaIg Problem

Before proving G6del's theorem, I will prove an equivalent result due to Turing: The

Halting Problem, which asks, "For any given program and any given input, is there is a

way of determining whether that program will halt when given that input?" For many

programs this can be decided on a case by case basis. What is wanted is a general pro-

cedure that, given any description of a program P, and any input z, will tell us whether

P halts when given z. In particular. we want a program that can decide the halting -..

question.

Before embarking on a search for a decision procedure for the halting problem, it is

wise to ask if such a procedure is possible. The classic approach to determine whether

something is possible or not assumes its existence and shows that this assumption

leads to a contradiction. Self-contradictory things don't exist.

The proof I'll discuss is related to the famous Liar's Paradox of Epimenides:

This statement is a lie.

J

Is the above statement true or false? If we assume it's true, then we must conclude

that it's false (since it's a lie); if we assume it's false, then we must conclude it's true

(since it's not a lie). Put simply, this statement contradicts itself. Since this state-

ment can be neither true nor false, we must conclude that it makes no factual cairn "

all. It was considerations of aaradoxes like this that led G6del and Turing to their

proofs.

_n the statement of the theorem and its prcof we will use a Pascal-like orgrrnniri

language called L. You will see, however that the result does not depend on thle

language used, and remains true for any realistic programming language.

Deflntimn: A procedure, called 'Halts', is called a deci sion orocedure for !he . ur

problem in L if, given ".) any string p representing a program P in L, and 2) any

string z, Halts(pz) = true if P(-) halts, and Halts,:) L'alse if P(x) gces into an

* -2

................

infinite loop.

.Thoren.- The decision procedure Halts for the halting problem in L is impossible.

Proof: Assume that the procedure Halts exists.

Halts(p,z) tells us whether the program P described by p will halt when applied to

the string x. Since v is itself a string, and we want to know what will happen when P is

applied to any string, we can legitimately ask what would happen if P were applied to

p, that is, if z-p. This is answered by the procedure call Halts(pp).

Now, consider the following definition of the procedure Q in L:

procedure Q(p) in

deflnition of Halts

been

if Halts(p.p) then

label: goto label

else retum:

endQ;

The meaning of "deflnition of Halts" is that the definition of Halts is to be placed at

that position in the definition of Q; this permits Q to make use of Halts. The behavior

of Q is as follows: if P(p) halts, then Q goes into an infinite loop; other,vise trnmedi-

ately returns.

J The character string above, which defines the procedure 7, is a prograrn ..

this c.haracter string q:

q = 'procedure Q(p) end Q;'

Since g is a string representing a program in L, it is a legitimate input to the pro-

cedure Q. Therefore we can consider the behavior of Q(q). Let's trace the Steps, 2i)

first asks if Halts(q ,q). Since Halts is a decision procedure for the halting problem, it

returns a Boolean 'true or !alse) result indicating whether the procedure represented

-3-

.-..-...-. o... °.".."........
I

by q will halt when applied to q. But the procedure represented by q is 2 it-elf, so

Halts(.q) asks whether Q(q) halts.

Now, either Q(q) halts or it doesn't. If it halts, then Halts(q,q) returns true, and

Q(q) goes into an infinite loop. This contradicts our assumption that Q(q) halts.

Therefore, let's suppose the opposite, that Q(q) doesn't halt. Then, Halts(q,q) returns

false and Q(q) immediately returns, i.e., halts. This again contradicts our assumption.

Since there are only two possibilities (Q(q) halts or it doesn't) and both lead to a con-

tradiction. we conclude that our assumption, that the procedure Halts is possible, was

contradictory. Therefore there can be no such procedure as Halts. QED.

We have skimmed over several issues in the proof of the halting theorem. In view of

its remarkable nature, we will reconsider them. In particular, a proof by contradiction

shows that at Least am of the assumptions is contradictory; it doesn't tell us which one.

In this case we made two major assumptions: that it is possible to write Halts in L and

that it is possible to write Q in L. Maybe Halts can be written but Q can't.

I haven't been too specific about what is and isn't legal in the language L. I have

said that L is typical in the sense that anything we prove about L will hold for any real-

istic language. In particular, observe that to be able to define Q, we only need to be

able to do the following things:

. Call another procedure (e.g. Halts).

. Do a conditional test.

. Go into an infinite looo.

* Return immediately (i.e., not go into an infinite loop).

These are things that can be done in any realistic programming language. Hence we

must conclude that there is no decision procedure for the halting problem for any real-

istic programming language.

-4-

d -

Are there any other hidden assumptions in our proof? Yes, we have also assumed

that our language can handle arbitrarily long character strings. Since programs can

be arbitrarily long, this is necessary if we are to be able to write a Halts procedure

that's applicable to all programs. What about languages that don't have character

strings? The proof still goes through if there's any data type (say, integers) that is

equivalent to arbitrary bit strings. The reason is that a character string is just a strmng

of bits. It should be noted, however, that the proof does not go through if any resource,

either space or time, is limited to a particular amount. Since all real computers have

such limitations, the theorem only/ applies to idealized computers with unbounded

resources.

-. Other Decigo Problemn

Having found that there is no decision procedure for the halting problem, a natural

question to ask is: What other questions can't be decided by a program? The answer

is: almost any property you care to name. Suppose you want to write a decision Dro-

cedure Does.D(p,z) that, for any behavior D, tells you if p does D when applied to z.

Then consider this procedure definition:

procedure Q(p) is

definition of DoesD

begin

if DoesD(p,p) then

don't do D

else do D

end Q;

In the case of the Halting Problem D was 'halts', so don't do D was accompiished by

'label: goto label' and do D was accomplished by 'return'.

Call this string q. By the same reasoning as before you can see that Q(q) does D if

and only if Q(q) doesn' do D. Hence we have a contradiction. The only v'-av the proof

-5-

can fail to go through is if the language is so weak that it is not possible to write code

% that does D and doesn't do D. For any realistic programming language, and property D

of interest, it will be possible to write Q in the language.

There are some properties of programs that can be decided by programs. For

example suppose we wanted to write a function Halts.Quickly(p,z) which determines if

p halts within 100 years when applied to z. Intuitively it seems like we ought to be able

* to write such a function: we just run P(z) until it halts or until 100 years are up, which-

* ever occurs ftrst. Thus, Halts.Quickly(p ,z) always returns an answer, although we may

have to wait 100 years to get it!

But, can't we write a paradoxical procedure Q that runs less than 100 years only if it

doesn't run less than 100 years? Let's try and do this. If HaltsQuickly(p ,p) is true, we

will go into an infinite loop (looping for over 100 years would be adequate); otherwise we

will return immediately. The resulting program is:

.' procedure Q(p) in

* ... definition of HaltsQuickly ...

begin

it Halts..Quickly(pp) then loop forever

else return

endQ;

Now consider the application Q(q). Does it halt quickly or not?

Suppose Q(q) halts within 100 years; then. Hats.. uickly, .-, :ttr's al',_, r.nu

Q(q) loops forever. This contradicts our assumption that Q(q) haits qulcly.

Now suppose Q(q) does not halt within 100 years; then Halts.Quicicly(q) is false,

and Q(q) returns immediately. Does this lead to a contradiction? No. Since "he run-

ning time of Q(q) includes the time necessary to execute Haits.Quuc1lY(q ,q). This

could well be more than 100 years (as it would be if we implemented it in the naive .way

described previously). Hence there is no contradiction.

"--

+ % _+ ,, .5'.'.' . o. . ' ,-...- '.. -. ,. . .- " •-, .- • . " . .

...-.. *. -- : -- . .

-v
This does not mean we can write HaltsQuickly, only that it does not lead to a con-

tradiction in the same way as Halts. On the other hand, our informal implementation

discussion shows that Halts-Quickly could actually be programmed.

Thus, the halting theorem does not say that it is impossible for a program to decide

any property of all programs. In fact it is the unlimited properties (e.g., halts eventu-

ally) which are undecidable; limited properties (e.g., halts 'within 100 years) are cften

decidable.

4- Symbolfc Leic

You have probably heard that Godel's theorem has something to do with the limitations

of logic; you may have even heard that it sets bounds on rational thought. Yet, I have

not said anything about logic in the preceding sections. I have only discussed the limi-

tations of what programs can tell us about other programs. To understand the connec-

tion between programs and logic, it will be necessary to discuss some topics in the

foundations of mathematics.

A major concern of mathematicians in the 19th century was rigor, standards of

proof by which mathematicians could ensure that their theorems were true. Mathema-

ticians were anxious to secure the foundations of mathematics, to ensure that there

were no contradictions implicit in mathematical theories. M athematicians divided

themselves into several, often antagonistic, schools depending on the approach to foun-

dations that they took. One of the most important of these schools, Zounded - a:_

famous mathematician David Hilbert (1882-1946), was called forrsazsm..

It had long been observed that deductive reasoning was often format; that is, tae

correctness of a deduction could be decided on the basis of the Corm of tLhe argument

without reference to the meanings of the terms used in it. This is particularly true cf

mathematical proofs: they -e often a, rmplished by successively transfcrming a for-

mula into new formulas. Tit- trausformations are simple mechanical rearrange-

ments of symbols. For example, we can prove z+=5 implies z=4 by Laese

-7-

- .
:g - -.. :- .. : .:. - .-..-..- : --- . .-

transformations:

z+1=5 = (z+1)-l = (4+1)-i

X+(1-1) -4+(1-1)

= z+O =4+0

=a z=4

The formalists believed that all mathematics could be reduced to formal sy stemS. A

formal system has two parts: (1) a set of initial strings, and (2) a finite set of comput-

able transformation rules. By applying the transformation rules to the initial strings,

a formal system generates a set of derived strings. As you can see, a formal system is

a primitive sort of program, in which (i) the transformation rules are the operations

and statements of the program, (2) the initial strings are the input data, and (3) the

derived strings are the intermediate and output data that result from applying the pro-

gram to the input data.

The formalists believed that they could make mathematics rigorous by reducing it

to a formal system. By letting the initial strings of a formal system represent the

mathematical axioms, ani the transformation rules represent the deductive rules of

inference, the derived strings would represent just those theorems that could be

deduced from the axioms. Since the transformation rules were mechanical symbol

manipulation operations, independent of the meaning of the symbols, it seemed that

this approach would eliminate both non-rigorous ideas and the use of intuition from

mathematical proofs.

Another important goal of the formalist program was to establish the consistency of

mathematics. Consistencyj means that it is not possible to prove both a proposition P'

and its negation 'not P'. In other words, consistency means that there are no contrad-

ictions inherent in the axioms.

9 The set of initial strings is req,red to be rcsrswvs, '.e., a cornuter program can decide -vhether a given
string is an initial string or not.

-8-

-,~...-.............'...

Mathematicians are also concerned with the completeness of their axcms: how

many axioms must be included in order to prove all true theorems? In other words, if

a theorem is true, and can be expressed in the symbols of the formal system, it should

be possible to derive it from the initial strings (axioms) by using the transformation

rules (rules of inference).

Formal systems gave the formalists hope that they would be able to prove the con-

i sistency and completeness of some formalization of mathematics. This is because for-

mal systems are themselves mathematical objects. Therefore, it is possible to prove

things about formal systems by using mathematical techniques. In particular, they

wished to show the consistency and completeness of mathematics by using rules of

inference that were so simple that no one could object to them. They wanted to use

lnitit#stic rules, that is, rules that could be executed on a computer.

You may have already realized the dubiousness of this proposition. A formal system

is essentially a programming language, and we know that it's impossible for a program

to decide much of anything about a reasonably powerful programming language.

Hence, if we conceive of mathematics as a formal system (i.e., programming language),

then we can see that it will be impossible for mathematics to decide (prove) much of

interest about any reasonably powerful formal system, including itself. Hence, it's riot

likely to be possible to use mathematics to prove the consistency and comolet-MnesS Zd

mathematics. This is in fact the case.

Let's consider how we could prove this re-v.:t mcre carefully, supose c..

mathematical language is powerful enough to express the theorem p halts on X kor

any program p 'in some programming language) and for any input z. 77hen we know

that this formal mathematical system must be incomplete, because otherwise we could

either prove or disprove 'p halts on x' for each prc--ram p and input z. This -.;Guid

solve the halting problem. which we gust showed is imrossibie. Hence, he central issue

is whether our formal mathematical language is powerful enough to state the theorem

-- 7

7S

p halts on z'.

Next I argue that the theorem 'p halts on z' can be stated in any reasonably powier-

ful formal mathematical language. In particular, if we can talk about integers,

sequences and sets of integers, and the arithmetic operations, then we can express 'p

halts on z'.

First, since 'p halts on z' is a proposition about programs, it must be possible to

talk about programs mathematically. A program in any programming language can

always be written as a finite sequence of characters, and characters can be thought of

as small integers (say, integers in the range 0 to 255 in the ASCII code), so any pro-

gram can be represented by a finite sequence of integers, which is a mathematical

object. If we assume that our programs take strings as inputs and return strings as

outputs, then the inputs and outputs of programs can also be represented as

sequences of integers.

We now know how to represent the program p and the input z; how do we express 'p

halts on x'? 'That this means is that if p is applied to x, then some output y will result.

Now, if we had a function 'apply (p,z)' that returned the result of applying p to X

(assuming it halts) then we could express 'p halts on z' mathematically:

p halts on x if and only if there exists a y such that y = apply(p ,;)

Notice that 'apply' is just a mathematical function that takes two sequerces of integers

and returns a sequence of integers.

The 'apply' function is essentially an interpreter for our programming language.

Can one define an interpreter using just mathematics? LISP programmers will realize

* that the answer is "yes," because programming in pure LISP is essentially Program-

ming in mathematics, and a LISP interpreter can be written in about tventy-five !ines

of LISP. If you are not familiar with LISP you may take a little more convincing.

Think about the way a program e'xecutes: at each stage of its execution ft takes the

-10-

values of a number of variables and computes new values for a (possibly overlapping)

set of variables. This alteration in the variables is determined by the current instruc-

tion being executed in the program. Further, each instruction designates another

* instruction as the next one to execute.

Now, the memory that contains all the variables in a program is just an array of bits,

so the memory can be represented as a sequence of integers. Also, the instruction-

pointer, which designates the next instruction in the program to execute, is just a

*: sequence of bits, so it can also be made part of this sequence of integers. Notice that

this sequence of integers, which we call the state of the program, is all that changes

from one step of the program to the next.

In order to avoid a lot of very tedious details, I have to skip some of the finer points

of this argument. Therefore, suppose that we have defined a mathematical function

'Next.State' such NexLState(p,s) is the state resulting from executing one step of the

program p in state s. (The instruction to execute is determined by the instruction-

pointer part of s.) It should be fairly clear that it is possible to define such a function,

because most programming language instructions just change a few variables, i.e.,

replace a few elements of the sequence of integers representing the state. Control-flow

instructions (e.g., goto) just change the part of the state representing the instruction-

pointer.

Assuming we have the Next.State function, it is easy to complete the argument. To

do this we need to define the idea that, given states s and s', executing the program _n

state s will eventually lead to a state s'. This just means that it is possible to get from

s to s' by executing zero or more steps in the program, i.e., we can get from s to s' by

zero or more applications of NexLState. This is easy to express mathematically as a

recursive definition:

Program p eventually takes s to s' if and only if

either s s'

-11-

, , .. , . ,€ , _ . . -. • ,

or there is a state s" such that

s= NexLState(p,s) and program p eventually takes s' to s'

It is now simple to express the equation y = apply(p ,z):

= apply(p,z) if and only if programp eventually takes x' to y

where z' is z with the initial instruction-pointer appended in the proper place.

This completes the argument that the halting problem can be expressed in a reason-

ably powerful formal mathematical system. Thus, a reasonably powerful formal

mathematical system, if it's consistent, must also be incomplete.

5. Relevanm

Godel's Incompleteness Theorem is often misinterpreted. In popular accounts it is

often represented as a proof of the inherent limitations of logic and mathematics. In

some quarters it is used as an excuse for irrationality and mysticism. Thus it is impor-

tant to consider the relevance of Gbdel's theorem, in particular to logic and mathemat-

ics.

Godel's theorem has great relevance to computer science. In its form as the Halting

Problem and its extensions, it tells us that we should not try to find algorithms that can

infallibly decide certain questions about any given program. Thus, Godel's theorem

puts ultimate limits on the capabilities of computers.

What is the relevance of Gbdel's theorem to logic and mathematics? It's major

effect has been to destroy the formalist program in mathematics. A primary goal of

that program was to prove, using mathematics, the consistency and completeness of

mathematics; Gbdel showed that this cannot be done. Godel also showed that man'y

other formal logical systems, such as three-valued logic, also suffer from the incom-

pleteness property. This should not surprise us, since any reasonably powerftd crnal

system is equivalent to a programming language, and so suffers from the urndecidabil-

ity theorems.

-':2-

.

Does this then indicate an inherent and unavoidable limitation to logic and

mathematics? Only if you are a formalist. In essence, G6del's theorem says that for-

malism cannot capture all of the power of mathematics and logic.

Let's consider an example of the latter case. Consider Fermat's Last Theorem, which

states that there are no integers z, y. and z such that for some n>2, zn +yn =z n . This

theorem has been neither proved nor disproved, although there is ample empirical evi-

dence of its truth. Suppose that Fermat's Last Theorem were known to be undecidable

in some reasonably powerful formal mathematical system. We would then have to con-

clude that the theorem is true. How can this be? Suppose (contrary to fact) that it

were false. Then there would exist integers a, b, c, and k>2 such that aJ+b=ck.

Now, in all reasonably powerful formal mathematical systems the following is a valid

deduction;

1. k>2

2. , +bht =cb

3. Therefore, there exists z, V, z, and n>2 such that z+yn=z,

The latter proposition is the contradictory of Fermat's Last Theorem. Hence, if

Fermat's Last Theorem is false, then it will be decidable in any reasonably powerful for-

mal mathematical system. Conversely, if Fermat's Last Theorem is undecidable in any

reasonably powerful formal mathematical system, then the theorem must be true.

QED.

What have we done here? It seems that we've taken an undecidable theorem and

decided it. More precisely, we've proved a theorem that was not provable within the

system. Sometimes this kind of proof is called "meta-mathematical" or "meta-

logical," but these are misnomers. The prefix 'meta-', suggests that some sort cf

unusual prc.cess has been used. In fact we've just used the -lain, old, garden-variety,

Aristotelian logic that's been known for 2500 years. Our proof would be clear to Euclid.

-13-

Thus, there is nothing superior or esoteric about our meta-logical proof. It ,vould be

more accurate to call the deductions of a formal logical system sb-logical proofs.

The conclusion we should draw is that formal systems are not very good models for

either mathematics or logic. Formal systems model situations where propositions can

be deduced from other propositions without regard for the meanings of the terms in

those propositions. One of the premises of formalism is that all mathematical truths

can be derived by applying this formal deductive process to a fixed set of axioms (ini-

tial strings). This has never been the case in mathematics. On the contrary, although

there is little debate on the laws of algebra or the calculus, there is an interminable

debate on the choice of the axioms upon which to found mathematics.

The problem is that since the time of Euclid mathematics has been viewed as a

purely deductive science in which theorems are deduced from given axioms and

definitions. In Euclid's time these axioms and definitions were considered self-evident;

the formalists considered them arbitrary. Thus, the axioms and definitions are con-

sidered the foundation of the edifice of mathematics.

In this deductive view mathematics is very different from the inductive sciences like

physics and chemistry. In these the basic laws are neither self-evident nor arbitrary.

Rather, they are the result of a lengthy process of scientific investigation. They are not

the foundations of these sciences; they are the capstones.

In fact mathematics is more like the other sciences than is generally acknowledged.

For eons man has known that apples drop from trees; it took Newton to explain this in

terms of the more basic ideas of mass and gravity. Similarly, for eons man has known

that 2+2=4; mathematicians are still proposing explanations of this fact in terms of

more basic ideas. Mathematics, like the other sciences, proceeds by a combination of

*nduction and deduction.

In summary, Gdei's Incompleteness Theorem is not a theorem about !cgic or

mathematics* it is a thecrem about programming. It places limits on t'ne t.- ueliUes

-14-

.** . **

of computers. not on the capabilities of mathematics or logic. Contrary to the cor-

mon notion that it demonstrates the impotence of reason, it is actually a sterling

example of the power of reason.

I. fbliegqraiy

1. Nagel, E. and Newman, J. R., Gd'deL's Proof, New York University Press, 1958.

This is the most readable traditional account of Gbdel's proof. It skips many of

the tedious details, although anyone familiar with programming ought to be able to

see how they could be filled in.

2. Hoare, C. A. R., and Allison, D. C. S., Incomputability, ACM Computig Surveys 4, 3

(September 1972), 169-178.

This is the only other presentation of Godel's proof that I am aware of that

makes use of programming concepts to simplify the proof.

3. Kline, M., Mathematics: The Loss of Cartaint, Oxford University Press, 1980.

In this book a well-known mathematician traces the gradual destruction, cul-

minating in G6del's proof, of the mathematicians' belief that they have a special,

non-empirical path to the truth.

-15-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration

Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52Hq 40

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Professor Bruce J. MacLennan, Code 52M1 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Robert Grafton
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217

A. Dain Samples
Computer Science Division - EECS
University of California at Berkeley
Berkeley, CA 94720

-16-

" L - .- . . °. o . ". . - - .o , . - " o o . . -. - "

Ikp.

4,4'

44t

IsIse

